
October 5, 2009
HopeRF

Copyright (C) 2009
Mike McCauley

Documentation for the HopeRF 1.2
communications library for Arduino.
rdu-
’s
he

API

een
ovide

check-

k or

r
ach

tan-
1.0 Introduction

Arduino is a low cost microcontroller with Open Source hardware, see http://www.a
ino.cc. HopeRF is a communications library for Arduino that allows multiple Arduino
to communicate using low-cost ‘transparent’ serial RF data transceivers, such as t
HM-TR from HopeRF (http://www.hoperf.com).

The document describes the HopeRF library and how to install and use it. Detailed
documentation can be found at
http://www.open.com.au/mikem/arduino/HopeRF/index.html

2.0 Overview

HopeRF is an Arduino library that provides features to send short messages betw
nodes equipped with RF serial data transceivers. It consists of several classes to pr
various levels of features:

• Basic unaddressed, unreliable messages with 16 bit Frame Check Sequence (
sum).

• Addressed, unreliable messages for point-to-point communications in a networ
mesh.

• Addressed, reliable messages for point-to-point communications in a network o
mesh.. This is reliable in the sense that it provides positive acknowledgement of e
message, with timeouts and retransmissions.

It is intended to be compatible with the HopeRF HM-TR 433MHz FSK transceivers
(although any ‘transparent’ serial data radio should work just as well). It uses the s
1 of 12

Supported hardware.

ivers

n

r it

ns-
the

an

ten-

an
etc.
hen
hat
dard Arduino HardwareSerial class to communicate with the RF module serially
through an on board UART on Arduino. This means you can have as many transce
as you have serial port UARTs on your Arduino.

Runs on Arduino Diecimila, Arduino Mega and possibly others.

The HopeRF library also compiles on Linux, and thelinux directory in the distruibu-
tion contains Makefile, sample programs and a test suite, which compile and run o
Linux. The server program talks to a HM-TR over a serial port at /dev/ttyUSB0.

3.0 Supported hardware.

This library is expected to work with any ‘transparent’ data radio transceiver, howeve
was developed and tested with the HopeRF HM-TR transceivers.

3.1 Hope HM-TR

The HopeRF HM-TR transceiver is an inexpensive 433MHz ’transparent’ serial tra
ceiver. It handles internally all the issues of preamble, synchronisation etc (which is
bulk of the work in my otherArduino library, VirtualWire). Although the HM-TR is
more expensive than the bare 433 MHz transceivers supported by VirtualWire, it
requires much fewer compute resources from the Arduino (in fact the HM-TR has
ATMega on it specifically to do the serial-433MHz translation). However the HM-TR
does not have any error detection built in. That is provided by this library.

The test devices were obtained from MicroZed conputers (http://
www.microzed.com.au). We bought a package of 2 433MHz devices, including an
nas for AUD45.00 (about US$35).

These transceivers have 6 connections:

• VDD (5V)

• DTX Data transmit from the module

• Ground

• DRX Data input to the module

• CONFIG

• ENABLE

They are available in 2 flavours with either TTL or RS232 interfaces.

According to Silicon Chip magazine, the HM-TR has a good quality transmitter. It c
be extensively configured via the serial port, including frequency, power, data rate
Unfortunately, configuration must be done by setting CONFIG high at startup time, t
using the HopeRF configuration program (Windows only) to set the configuration. T
process is not covered here.
2 of 12 HopeRF

Supported hardware.

o a
r

TL
nd
The ENABLE pin enables the transceiver. If ENABLE is low, the transceiver goes int
low power sleep mode. The HopeRF library does not use or require the ENABLE o
CONFIG pins.

FIGURE 1. HopeRF HM-TR 433 MHz transceiver

Details at http://www.hoperf.com/pro/HM-TR.html

These devices are easy to connect to an Arduino: they require only +5V, GND and T
transmit and receive pins. It can connect directly to Arduino serial port UART pins, a
use the 5V power from the Arduino. Only 4 interconnection wires are required.
HopeRF 3 of 12

Downloading and installation

nt;
 in
FIGURE 2. HM-TR connected to Arduino Mega

4.0 Downloading and installation

The latest version of this document is available from

http://www.open.com.au/mikem/arduino/HopeRF/HopeRF.pdf

Download the HopeRF distribution from

http://www.open.com.au/mikem/arduino/HopeRF/HopeRF-1.2.zip

To install, unzip the library to a sub-directory of thehardware/libraries sub-
directory of your Arduino application directory. Then launch the Arduino environme
you should see the library in the Sketch->Import Library menu, and example code
File->Sketchbook->Examples->Library-HopeRF menu.

The complete documentation of the library API can be found at:

http://www.open.com.au/mikem/arduino/HopeRF/index.html
4 of 12 HopeRF

Sample code

nge
below.
5.0 Sample code

The following samples are available as examples in the HopeRF distribution.

5.1 HRFMessage

5.1.1 HRFMessageClient
Sends an unaddressed message every second. Any HRFMEssageServer within ra
will receive the message and send a reply. Test this with the HRFMessageServer

#include <HRFMessage.h>
// Declare the HRFMessage to use Serial1 for IO
// with the HM-TR module
HRFMessage client(&Serial1);
long lastSendTime = 0;
void setup()
{
 Serial.begin(9600); // Monitoring via USB
 Serial1.begin(9600); // defaults to 9600
}
void loop()
{
 // Send a message to the server at most once a second
 long thisTime = millis();
 if (thisTime > lastSendTime + 1000)
 {
 client.send((uint8_t*)"test\n", 6);
 Serial.print("sending\n");
 lastSendTime = thisTime;
 }
 // But always look for a reply
 uint8_t buf[HRF_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (client.recv((uint8_t*)&buf, &len))
 {
 // Got a reply from the server
 Serial.print("got: ");
 Serial.print((const char*)buf);
 }
}

5.1.2 HRFMessageServer
Server to work with HRFMessageClient above. When it receives a message from
HRFMessageClient it sends a reply.

#include <HRFMessage.h>
// Declare the HRFMessage to use Serial1 for
// IO with the HM-TR module
HRFMessage server(&Serial1);
void setup()
{
 Serial.begin(9600); // Monitoring via USB
 Serial1.begin(9600); // defaults to 9600
HopeRF 5 of 12

Sample code

uino
}
void loop()
{
 uint8_t buf[HRF_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (server.recv((uint8_t*)&buf, &len))
 {
 // Got a message from the client.
 // Send a reply back
 server.send((uint8_t*)"reply\n", 7);
 Serial.print("got: ");
 Serial.print((const char*)buf);
 }
}

5.2 HRFDatagram

5.2.1 HRFDatagramClient
Implements a simple wireless client. Sends an addressed message to another Ard
running the HRFDatagramServer code below and gets a reply.

#include <HRFDatagram.h>
// Declare the HRFDatagram to use Serial1 for
// IO with the HM-TR module
// The address of this node is 10.
HRFDatagram client(&Serial1, 10);
long lastSendTime = 0;
void setup()
{
 Serial.begin(9600); // Monitoring via USB
 Serial1.begin(9600); // defaults to 9600
}
void loop()
{
 // Send a message to the server at most once a second
 long thisTime = millis();
 if (thisTime > lastSendTime + 1000)
 {
 // Send a message to node 11 (the server)
 client.sendto(11, (uint8_t*)"test\n", 6);
 Serial.print("sending\n");
 lastSendTime = thisTime;
 }
 // But always look for a reply
 uint8_t from;
 uint8_t buf[HRF_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (client.recvfrom((uint8_t*)&buf, &len, &from))
 {
 // Got a reply from the server
 Serial.print("got from node: ");
 Serial.print(from, DEC);
 Serial.print(": ");
6 of 12 HopeRF

Sample code

ning

second
rver,
er,
 Serial.print((const char*)buf);
 }
}

5.2.2 HRFDatagramServer
Implements a simple wireless server. Waits for a message from another Arduino run
the HRFDatagramClient code above and sends a reply.

#include <HRFDatagram.h>
// Declare the HRFMessage to use Serial1 for
// IO with the HM-TR module
// The address of this node is 11.
HRFDatagram server(&Serial1, 11);
void setup()
{
 Serial.begin(9600); // Monitoring via USB
 Serial1.begin(9600); // Defaults to 9600
}
void loop()
{
 uint8_t from;
 uint8_t buf[HRF_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (server.recvfrom((uint8_t*)&buf, &len, &from))
 {
 // Got a message from the client.
 // Send a reply back to whomever sent it
 server.sendto(from, (uint8_t*)"reply\n", 7);
 Serial.print("got from node: ");
 Serial.print(from, DEC);
 Serial.print(": ");
 Serial.print((const char*)buf);
 }
}

5.3 HRFReliableDatagram

5.3.1 HRFReliableDatagramClient
Implements reliable messages between client and server. Sends a message every
to HRFReliableDatagramServer below. Waits for an acknowledgement from the se
retransmitting if necessary. Thern possibly receives a reply message from the serv
which is automatically acknowledged to the server

#include <HRFReliableDatagram.h>
// Declare the HRFDatagram to use Serial1 for
//IO with the HM-TR module
// The address of this node is 10.
HRFReliableDatagram client(&Serial1, 10);
long lastSendTime = 0;
void setup()
{
 Serial.begin(9600); // Monitoring via USB
 Serial1.begin(9600); // Defaults to 9600
HopeRF 7 of 12

Sample code
 client.setTimeout(500);
}
void loop()
{
 // Send a message to the server at most once a second
 long thisTime = millis();
 if (thisTime > lastSendTime + 1000)
 {
 // Send a message to node 11 (the server)
 Serial.print("sending\n");
 if (!client.sendtoWait(11, (uint8_t*)"test\n", 6))
 Serial.print("sendtoWait failed\n");
 lastSendTime = thisTime;
 }
 // But always look for a reply
 uint8_t from;
 uint8_t buf[HRF_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (client.recvfromAck((uint8_t*)&buf, &len, &from))
 {
 // Got a reply from the server
 Serial.print("got from node: ");
 Serial.print(from, DEC);
 Serial.print(": ");
 Serial.print((const char*)buf);
 }
}

5.3.2 HRFReliableDatagramServer

#include <HRFReliableDatagram.h>
// Declare the HRFMessage to use Serial1 for
// IO with the HM-TR module
// The address of this node is 11.
HRFReliableDatagram server(&Serial1, 11);
void setup()
{
 Serial.begin(9600); // Monitoring via USB
 Serial1.begin(9600); // Defaults to 9600
 server.setTimeout(500);
}
void loop()
{
 uint8_t from;
 uint8_t buf[HRF_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (server.recvfromAck((uint8_t*)&buf, &len, &from))
 {
 Serial.print("got from node: ");
 Serial.print(from, DEC);
 Serial.print(": ");
 Serial.print((const char*)buf);
 // Got a message from the client.
 // Send a reply back to whomever sent it
8 of 12 HopeRF

Implementation Details

eive

e

lud-

9)

es
 if (!server.sendtoWait(from, (uint8_t*)"reply\n", 7))
 Serial.print("sendtoWait failed\n");
 }
}

6.0 Implementation Details

The code is a set of conventional C++ classes, with no interrupt service routines
(although the HardwareSerial class which HopeRF uses does use interrupts to rec
each serial character from the transceiver).

HopeRF uses the Arduino HardwareSerial class to implement the serial IO with th
transceiver module.

6.0.1 HRFMessage

HRFMessage can send messages of up to HRF_MAX_PAYLOAD (61) octets.

Each message is transmitted as:

• 1 octet of message length (4 to 64), count includes length octet and FCS octets

• message (up to 61 octets)

• 2 octets FCS, sent low byte-hi byte

FCS (16 bits) is the complement of CCITT CRC-16 of all octets in the message, inc
ing the length octet, but not including the FCS.

6.0.2 HRFDatagram

HRFDatagram can send messages of up to HRF_MAX_DATAGRAM_PAYLOAD (5
octets, using 8 bit node addresses. Broadcast address of
HRF_BROADCAST_ADDRESS (0xFF) can be used to send a message to all nod
within range.

Each message is transmitted as:

• 1 octet of message length (4 to 64), count includes length octet and FCS octets

• 1 octet of DEST address

• 1 octet of SRC address

• message (up to 59 octets)

• 2 octets FCS, sent low byte-hi byte

6.0.3 HRFReliableDatagram

HRFReliableDatagram can send messages of up to
HRF_MAX_RELIABLE_DATAGRAM_PAYLOAD (58) octets using 8 bit node
addresses.
HopeRF 9 of 12

Performance

 mes-

tries
 New
 mes-

r.

with

bout
dis-
When a message is received by a node, it is automatically acknowledged. When a
sage is transmitted by a node, it automcatically waits until an acknowledgement is
received, retransmitting as required until an acknowledgement is received or all re
are exhausted. Duplicate messages (due to lost acknowledgements) are dropped.
messages received while waiting for an acknowledgement are ignored. Broadcast
sages are never acknowledged.

Each message is transmitted as:

• 1 octet of message length (4 to 64), count includes length octet and FCS octets

• 1 octet of DEST address

• 1 octet of SRC address

• 1 octet of FLAGS/SQN. The most significant bit is an acknowledge flag (set in
acknowledge messages), and the lower 7 bits are a message sequence numbe

• message (up to 58 octets)

• 2 octets FCS, sent low byte-hi byte

7.0 Performance

Tests were performed with 2 Arduino Mega and HM-TR with the supplied 433MHz
omnidirectional antenna. Transmitter and receiver were approx. 1m above ground,
the test conducted line of sight over a bitumen road. The software running was the
HRFReliableDatagram Client and Server above. The HM-TR transmit and receive
lights were monitored to determine when errors and retransmissions occurred. At a
200m, occasional retransmissions were seen. With suitable retries settings larger
tances of the order of 300m (as per the HopeRF literature) should be achievable.
10 of 12 HopeRF

Connections

i-

tion
ho
trib-
Ver-
l

8.0 Connections

8.1 HM-TR transceiver

FIGURE 3. Wiring for HM-TR receiver to Arduino Mega

Note that in the HM-TR ENABLE is high, meaning the HM-TR is always enabled.
CONFIG is low, meaning operate (not configure).

9.0 Copyright and License

This software is Copyright (C) 2009 Mike McCauley. Use is subject to license cond
tions. The main licensing options available are GPL V2 or Commercial:

9.1 Open Source Licensing GPL V2

This is the appropriate option if you want to share the source code of your applica
with everyone you distribute it to, and you also want to give them the right to share w
uses it. If you wish to use this software under Open Source Licensing, you must con
ute all your source code to the open source community in accordance with the GPL
sion 2 when your application is distributed. See http://www.gnu.org/copyleft/gpl.htm

Arduino Mega
HM-TR TTL

19 RX1 DTX

18 TX1 DRX

GND GND

Antenna

5V VDD

CONFIG

ENABLE
HopeRF 11 of 12

Copyright and License

re
9.2 Commercial Licensing

This is the appropriate option if you are creating proprietary applications and you a
not prepared to distribute and share the source code of your application. Contact
info@open.com.au for details.
12 of 12 HopeRF

	1.0 Introduction
	2.0 Overview
	3.0 Supported hardware.
	3.1 Hope HM-TR

	4.0 Downloading and installation
	5.0 Sample code
	5.1 HRFMessage
	5.1.1 HRFMessageClient
	5.1.2 HRFMessageServer

	5.2 HRFDatagram
	5.2.1 HRFDatagramClient
	5.2.2 HRFDatagramServer

	5.3 HRFReliableDatagram
	5.3.1 HRFReliableDatagramClient
	5.3.2 HRFReliableDatagramServer

	6.0 Implementation Details
	6.0.1 HRFMessage
	6.0.2 HRFDatagram
	6.0.3 HRFReliableDatagram

	7.0 Performance
	8.0 Connections
	8.1 HM-TR transceiver

	9.0 Copyright and License
	9.1 Open Source Licensing GPL V2
	9.2 Commercial Licensing

